labaphys.md

# Лаба 213 $$\frac{d^2x}{dt^2}+2\beta\frac{dx}{dt}+\omega^2x=0$$ $$x(t)=x_0e^{-\beta t}\cos(\omega t + \phi _0)$$ $$\omega = \sqrt{\omega _0^2 - \beta _0^2}$$ $$\frac{d^2I}{dt^2}+\frac{R}{L}\frac{dI}{dt}+\frac{I}{LC}=0$$ $$\beta = \frac{R}{2L}$$ $$\omega _0 = \sqrt{\frac{1}{LC}}$$ $$\omega = \sqrt{\frac{1}{LC} - \frac{R^2}{4L^2}}$$ $$\lambda = \ln \frac{I(t)}{I(t + T)}=\ln \frac{e^{-\beta t}}{e^{-\beta (t + T)}}=\ln e^{\beta T} = \beta T$$ $$Q=\frac{\pi}{\lambda}$$ # Лаба 12 $$T=2 \pi \sqrt{\frac{J}{mgl}}$$ $$T=2 \pi \sqrt{\frac{J_0 + J_g}{(m_0 + m_g)gl}}$$ $$J_0 = \frac{(m_g + m_0)glT^2}{4\pi^2} - J_g$$ $$l = \frac{m_gL}{m_g + m_0}$$ $$J_0 = \frac{m_ggLT^2}{4\pi^2} - J_g$$ $$J_g=J_c + m_gL^2=m_g(\frac{r^2}{2}+L^2)$$ $$J_0 = \frac{m_ggLT^2}{4\pi^2} - m_g(\frac{r^2}{2}+L^2)$$